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ABSTRACT
We present a new algorithm for reconstructing an exact al-
gebraic number from its approximate value by using an im-
proved parameterized integer relation construction method.
Our result is consistent with the existence of error control-
ling on obtaining an exact rational number from its approx-
imation. The algorithm is applicable for finding exact min-
imal polynomial of an algebraic number by its approximate
root. This also enables us to provide an efficient method
of converting the rational approximation representation to
the minimal polynomial representation, and devise a simple
algorithm to factor multivariate polynomials with rational
coefficients.

Compared with the subsistent methods, our method com-
bines advantage of high efficiency in numerical computation,
and exact, stable results in symbolic computation. The ex-
perimental results show that the method is more efficient
than identify in Maple for obtaining an exact algebraic num-
ber from its approximation. Moreover, the Digits of our
algorithm is far less than the LLL-lattice basis reduction
technique in theory. In this paper, we completely imple-
ment how to obtain exact results by numerical approximate
computations.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on Computations on polynomials; I.1.2 [Symbolic and Al-
gebraic Manipulation]: Algorithms—Algebraic algorithms
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1. INTRODUCTION
Symbolic computations are principally exact and stable.

However, they have the disadvantage of intermediate ex-
pression swell. Numerical approximate computations can
solve large and complex problems fast, whereas only give
approximate results. The growing demand for speed, accu-
racy and reliability in mathematical computing has accel-
erated the process of blurring the distinction between two
areas of research that were previously quite separate. There-
fore, algorithms that combine ideas from symbolic and nu-
meric computations have been of increasing interest in the
recent two decades. Symbolic computations are for sake of
speed by intermediate use of floating-point arithmetic. The
work reported in [19, 9, 13, 10, 8] studied the recovery of
approximate value from numerical intermediate results. A
somewhat related topic is algorithms that obtain the exact
factorization of an exact input polynomial by use of floating
point arithmetic in a practically efficient technique [6]. In
the meantime, symbolic methods are applied in the field of
numerical computations for ill-conditioned problems [7, 5,
20]. The main goal of hybrid symbolic-numeric computa-
tion is to extend the domain of efficiently solvable problems.
However, there is a gap between approximate computations
and exact results[22].

We consider the following question: Suppose we are given
an approximate root of an unknown polynomial with inte-
gral coefficients and a bound on the degree and size of the
coefficients of the polynomial. Is it possible to infer the
polynomial and its exact root? The question was raised by
Manuel Blum in Theoretical Cryptography, and Jingzhong
Zhang in Automated Reasoning, respectively. Kannan et al
answered the question in [15]. However, their technique is
based on the Lenstra-Lenstra-Lovasz(LLL) lattice reduction
algorithm, which is quite unstable in numerical computa-
tions. In [14], Just et al presented an algorithm for finding
an integer relation on n real numbers using the LLL-lattice
basis reduction technique, which needed the high precision.
The function MinimalPolynomial in maple, which finds min-



imal polynomial for an approximate root, was implemented
using the same technique.

In this paper, we present a new algorithm for finding ex-
act minimal polynomial and reconstructing the exact root by
approximate value. Our algorithm is based on the improved
parameterized integer relation construction algorithm, whose
stability admits an efficient implementation with lower run
times on average than the existing algorithms, and can be
used to prove that relation bounds obtained from computer
runs using it is numerically accurate. The other function
identify in maple , which finds a closed form for a decimal
approximation of a number, was implemented using the in-
teger relation construction algorithm. However, the choice
of Digits of approximate value is fairly arbitrary [4]. In con-
trast, we fully analyze numerical behavior of an approximate
to exact value and give how many Digits of approximate
value, which can be obtained exact results. The work is re-
gard as a further research in [23]. We solve the problem,
which can be described as follows:

Given an approximate value α̃ at arbitrary accuracy of an
unknown algebraic number, and we also know the degree n
of the algebraic number and an upper bound N of its height
on minimal polynomial in advance. The problem will be
solved in two steps: First, we discuss how much the error ε
should be, so that we can reconstruct the algebraic number
α from its approximation α̃ when it holds that |α − α̃| < ε.
Of course, ε is a function in n and N . Second, we give an al-
gorithm to compute the minimal polynomial of the algebraic
number.

Based on our method, we propose a simple polynomial-
time algorithm to factor multivariate polynomials with ra-
tional coefficients, and provide a natural, efficient technique
to the minimal polynomial representation.

The rest of this paper is organized as follows. Section 2
illustrates the improved parameterized integer relation con-
struction algorithm. Section 3 discusses how to recover a
quadratic algebraic number and reconstruct minimal poly-
nomial by approximation. Section 4 gives some experimental
results. The final section concludes this paper.

2. PRELIMINARIES
In this section, we first give some notations, and a brief in-

troduction on integer relation problems. Then an improved
parameterized integer relation construction algorithm is also
reviewed.

2.1 Notations
Throughout this paper, Z denotes the set of the integers,

Q the set of the rationals, R the set of the reals, O(Rn) the
corresponding system of ordinary integers, U(n − 1, R) the
group of unitary matrices over R, GL(n, O(R)) the group of
unimodular matrices with entries in the reals, coliB the i-th
column of the matrix B. The ring of polynomials with inte-
gral coefficients will be denoted Z[X]. The content of a poly-
nomial p(X) in Z[X] is the greatest common divisor of its
coefficients. A polynomial in Z[X] is primitive if its content

is 1. A polynomial p(X) has degree d if p(X) =
∑d

i=0 piX
i

with pd �= 0. We write deg(p) = d. The length |p| of

p(X) =
∑d

i=0 piX
i is the Euclidean length of the vector

(p0, p1, · · · , pd); the height |p|∞ of p(X) is the L∞-norm
of the vector(p0, p1, · · · , pd), so |p|∞ = max0≤i≤d |pi|. An
algebraic number is a root of a polynomial with integral co-
efficients. The minimal polynomial of an algebraic number

α is the irreducible polynomial in Z[X] satisfied by α. The
minimal polynomial is unique up to units in Z. The degree
and height of an algebraic number are the degree and height
of its minimal polynomial, respectively.

2.2 Integer Relation Algorithm
There exists an integer relation amongst the numbers x1, x2,

· · · , xn if there are integers a1, a2, · · · , an, not all zero, such
that

∑n
i=1 aixi = 0. For the vector x = [x1, x2, · · · , xn]T ,

the nonzero vector a = [a1, a2, · · · , an] ∈ Zn is an integer
relation for x if a · x = 0.

In order to introduce the integer relation algorithm, we
recall some useful definitions and theorems[12, 3]:

Definition 1. (Mx) Assume x = [x1, x2, · · · , xn]T ∈ Rn

has norm |x|=1. Define x⊥ to be the set of all vectors in
Rn orthogonal to x. Let O(Rn) ∩ x⊥be the discrete lattice
of integral relations for x. Define Mx > 0 to be the smallest
norm of any relation for x in this lattice.

Definition 2. (Hx) Assume x = [x1, x2, · · · , xn]T ∈ Rn

has norm |x|=1. Furthermore, suppose that no coordinate
entry of x is zero, i.e., xj �= 0 for 1 ≤ j ≤ n(otherwise x has
an immediate and obvious integral relation). For 1 ≤ j ≤ n
define the partial sums

s2
j =

∑
j≤k≤n

x2
k.

Given such a unit vector x, define the n × (n − 1) lower
trapezoidal matrix Hx = (hi,j) by

hi,j =

⎧⎪⎨
⎪⎩

0 if 1 ≤ i < j ≤ n − 1,

si+1/si if 1 ≤ i = j ≤ n − 1,

−xixj/(sjsj+1) if 1 ≤ j < i ≤ n.

Note that hi,j is scale invariant.

Definition 3. (Modified Hermite Reduction) Let H be a
lower trapezoidal matrix, with hi,j = 0 if j > i and hj,j �= 0.
Set D = In, define the matrix D = (di,j) ∈ GL(n, O(R))
recursively as follows: For i from 2 to n, and for j from i-1
to 1(step-1), set q = nint(hi,j/hj,j); then for k from 1 to j
replace hi,k by hi,k−qhj,k, and for k from 1 to n replace di,k

by di,k − qdj,k, where the function nint denotes a nearest
integer function, e.g., nint(t) = �t + 1/2�.

Theorem 1. Let x �= 0 ∈ Rn. Suppose that for any re-
lation m of x and for any matrix A ∈ GL(n, O(R)) there
exists a unitary matrix Q∈ U(n-1) such that H = AHxQ
is lower trapezoidal and all of the diagonal elements of H
satisfy hj,j �= 0. Then

1

max1≤j≤n−1 |hj,j | = min
1≤j≤n−1

1

|hj,j | ≤ |m|.

Proof. See Theorem 1 of [12].

Remark 1. The inequality of Theorem 1 offers an increas-
ing lower bound on the size of any possible relation. Theo-
rem 1 can be used with any algorithm that produces GL(n, O(R))
matrices. Any GL(n, O(R)) matrix A whatsoever can be
put into Theorem 1.

Theorem 2. Assume real numbers, n ≥ 2, τ > 1, γ >√
4/3, and that 0 �= x ∈ Rn has O(R) integer relations. Let



Mx be the least norm of relations for x. Then PSLQ(τ ) will
find some integer relation for x in no more than(

n

2

)
log(γn−1Mx)

logτ

iterations.

Proof. See Theorem 2 of [12].

Theorem 3. Let Mx be the smallest possible norm of any
relation for x. Let m be any relation found by PSLQ(τ). For

all γ >
√

4/3 for real vectors

|m| ≤ γn−2Mx.

Proof. See Theorem 3 of [12].

Remark 2. For n=2, Theorem 3 proves that any relation
0 �= m ∈ O(R2) found has norm |m| = Mx. In other words,
PSLQ(τ ) finds a shortest relation. For real numbers this
corresponds to the case of the Euclidean algorithm.

Based on these theorems as above, and if there exists a
known error controlling ε, then an algorithm for obtaining
the integer relation can be designed as follows:

Algorithm 1. Parameterized Integer Relation Construc-
tion
Input: a vector x, the upper bound N on the height of min-
imal polynomial, and an error ε > 0;
Output: an integer relation m.

Step 1: Set i := 1, m := 0, τ > 2/
√

3, and unitize
the vector x to x̄;

Step 2: Set Hx̄ by definition 2;

Step 3: Produce matrix D ∈ GL(n, O(R)) using
modified Hermite Reduction by definition 3;

Step 4: Set x̄ := x̄ · D−1, H := D · H,
A := D · A, B := B · D−1,
case 1: if x̄j = 0, then m := coljB;
case 2: if hi,i < ε, then m := coln−1B;

Step 5: if 0 < |m|∞ ≤ N , then goto Step 12;
if |m|∞ > N , there is no such an integer relation,
algorithm terminating.

Step 6: i := i + 1;

Step 7: Choose an integer r, such that τ r|hr,r | ≥
τ j |hi,i|, for all 1 ≤ j ≤ n − 1;

Step 8: Define α := hr,r, β := hr+1,r, λ := hr+1,r+1,

σ :=
√

β2 + λ2;

Step 9: Change hr to hr+1, and define the permu-
tation matrix R;

Step 10: Set x̄ := x̄ · R, H := R · H , A := R · A,
B := B · R, if i=n-1, then goto Step 4;

Step 11: Define Q := (qi,j) ∈ U(n − 1,R), H :=
H · Q, goto Step 4;

Step 12: return m.

By algorithm 1, we can find the integer relation U(n−1, R)
of the vector x = (1, α̃, α̃2, · · · , α̃n). So, we get a nonzero
polynomial of degree n, which denotes G(x) for the rest of
this paper, i.e.,

G(x) = m · (1, x, x2, · · · , xn)T . (1)

Our main task is to show that polynomial (1) is uniquely
determined under assumptions, and discuss the controlling
error ε in algorithm 1 in the next section.

3. RECONSTRUCTING MINIMAL POLYNO-
MIAL FROM ITS APPROXIMATION

In this section, we will solve such a problem: For a given
floating number α̃, which is an approximation of unknown al-
gebraic number, how do we obtain the exact value? Without
loss of generality, we first consider the recovering quadratic
algebraic number from its approximate value, and then gen-
eralize the results to the case of algebraic number of high
degree. At first, we state some lemmas as follows:

Lemma 1. Let f be a nonzero polynomial in Z[x] of de-
gree n. If ε = max1≤i≤n |αi − α̃i|1, where α̃i for 1 ≤ i ≤ n
are the rational approximations to the powers αi of an alge-
braic number α, and α̃0 = 1, then

|f(α) − f(α̃)| ≤ ε · n · |f |∞. (2)

Proof. Let f =
∑n

i=0 aix
i, where an �= 0. Since f(α) −

f(α̃) =
∑n

i=0 ai(α
i−α̃i), we get |f(α)−f(α̃)| = |∑n

i=1 ai(α
i−

α̃i)|, and then

|
n∑

i=1

ai(α
i − α̃i)| ≤

n∑
i=1

|ai| · |(αi − α̃i)|

≤
n∑

i=1

|ai| · ε ≤ n · |f |∞ · ε.

This proves Lemma 1.

Lemma 2. Let h and g be two nonzero polynomials in
Z[x] of degree n and m, respectively, and let α ∈ R be a
zero of h with |α| ≤ 1. If h is irreducible and g(α) �= 0, then

|g(α)| ≥ n−1 · |h|−m · |g|1−n. (3)

Proof. See Proposition(1.6) of [15]. If |α| > 1, a simple
transform of it does.

Corollary 1. Let h and g be two nonzero polynomials in
Z[x] of degrees n and m, respectively, and let α ∈ R be a
zero of h with |α| ≤ 1. If h is irreducible and g(α) �= 0, then

|g(α)| ≥ n−1 · (n + 1)−
m
2 · (m + 1)

1−n
2 · |h|−m

∞ · |g|1−n
∞ . (4)

Proof. First notice that |f |2 ≤ (n+1)·|f |2∞ holds for any
polynomial f of degree at most n > 0, so |f | ≤ √

n + 1·|f |∞.
From Lemma 2, we get

|g(α)| ≥ n−1 · (n + 1)−
m
2 · (m + 1)

1−n
2 · |h|−m

∞ · |g|1−n
∞ .

This proves Corollary 1.

1ε is defined by the same way for the rest of this paper.



Theorem 4. Let α̃ be an approximate value to an un-
known algebraic number α with degree n > 0, N be the up-
per bound on the height of minimal polynomial of α. For
any G(x) in Z[x] with degree n, if

|G(α̃)| < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n − n · ε · |G|∞,

then

|G(α)| < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n.

Proof. Let α ∈ R be with |α| ≤ 1. From Lemma 1, we
notice that |G(α) − G(α̃)| ≤ ε · n · |G|∞, and

|G(α)| − |G(α̃)| ≤ |G(α) − G(α̃)|,
so,

|G(α)| ≤ |G(α̃)| + n · ε · |G|∞. (5)

From the assumption of the theorem, since

|G(α̃)| < n−1 · (n+1)−n+ 1
2 · |G|−n

∞ ·N1−n −n · ε · |G|∞, (6)

combined with (5), we have proved Theorem 4.

Corollary 2. Let α̃ be an approximate value to an un-
known algebraic number α with degree n > 0, N be the
upper bound on the height of minimal polynomial of α. For

any G(x) in Z[x] with degree n, if |G(α)| < n−1 ·(n+1)−n+ 1
2 ·

|G|−n
∞ · N1−n, then

G(α) = 0. (7)

The primitive part of polynomial G(x) is the minimal poly-
nomial of algebraic number α.

Proof. (Proof by Contradiction) Let α ∈ R be with
|α| ≤ 1. According to Lemma 2, suppose on the contrary
that G(α) �= 0, then

|G(α)| ≥ n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n.

From the assumption of the corollary, we have

|G(α)| < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n.

However, it leads to a contradiction. So, G(α) = 0.
Let G(x) =

∑n
i=0 aix

i, which is constructed by the parame-
terized integer relation construction algorithm from the vec-
tor x = (1, α, α2, · · · , αn). Since algebraic number α with
degree n > 0, according to the definition of minimal poly-
nomial, then the primitive polynomial of G(x), denoted by
pp(G(x)). Hence pp(G(x)) is just irreducible and equal to
g(x). Of course, it is unique.
This proves Corollary 2.

3.1 Recovering Quadratic Algebraic Number
from Approximation

For simplicity, we discuss how to obtain quadratic alge-
braic number from its approximation by using integer rela-
tion algorithm. Let α̃ be the approximate value, considering
the vector v = (1, α̃, α̃2). Our goal is to find a vector w
which has all integer entries such that the dot product of v
and w is less than an upper bound, which is obtained and we
are able to get the size of the neighborhood is 1/(12

√
3N4)

from theorem 4. The following theorem answers the basic
questions of this approach.

Theorem 5. Let α̃ be an approximate value belonging to
an unknown quadratic algebraic number α. If

ε = |α − α̃| < 1/(12
√

3N4), (8)

where N is the upper bound on the height of its minimal
polynomial, then

G(α) = 0,

and the primitive part of G(x) is its minimal polynomial,
where G(x) =

∑2
i=0 aix

i.

Proof. Let α ∈ R be with |α| ≤ 1. From Theorem 4
and Corollary 2, it is obvious that

G(α) = 0,

if and only if

|G(α)| < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n. (9)

Under the assumption of the theorem, we get n = 2 and
an approximate value α̃ belonging to an unknown quadratic
algebraic number α.
For substituting the approximate value α̃ in G(x), denoted
by G(α̃), there are two cases:
Case 1: G(α̃) �= 0, |G(α̃)| > 0.
We have the inequality (6)holds, i.e.,

0 < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n − n · ε · |G|∞. (10)

Clearly, the inequality (10) satisfies from the condition (8).
This proves the Case 1.
Case 2: G(α̃) = 0.
From Lemma 1, we have |G(α)−G(α̃)| < n · ε · |G|∞, hence
|G(α)| < n · ε · |G|∞. In order to satisfy condition (9), we
only need the following inequality holds,

n · ε · |G|∞ < n−1 · (n + 1)−n+ 1
2 · |G|−n

∞ · N1−n. (11)

From theorem 3, and algorithm 1 in Step 5, |G|∞ is not more
than N . Hence we replace |G|∞ by N . So the correctness of
the inequality (11) follows from (8). This proves Theorem
5.

This theorem leads to the following algorithm for recov-
ering the quadratic algebraic number of α̃:

Algorithm 2. Recovering Quadratic Algebraic Number
Input: a floating number (α̃, N) belonging to an unknown
quadratic algebraic number α, i.e., satisfying (8).
Output: a quadratic algebraic number α.

Step 1: Construct the vector v;

Step 2: Compute ε satisfying (8);

Step 3: Call algorithm 1 to find an integer relation
w for v;

Step 4: Obtain w(x) the corresponding polyno-
mial;

Step 5: Evaluate the primitive part of w(x) to g(x);

Step 6: Solve the equation g(x) = 0 and choose
the corresponding algebraic number to α;

Step 7: return α.

Theorem 6. Algorithm 2 works correctly as specified and
uses O(logN) binary bit operations, where N is as above.

Proof. Correctness follows from Theorem 5. The cost of
the algorithm is O(logN) binary bit operations obviously.



3.2 Obtaining Minimal Polynomial of High De-
gree

If α is a real number, then by definitioin α is algebraic
exactly, for some n, the vector

(1, α, α2, · · · , αn) (12)

has an integer relation. The integral coefficients polyno-
mial of lowest degree, whose root an algebraic number α
is, is determined uniquely up to a constant multiple; it is
called the minimal polynomial for α. Integer relation al-
gorithm can be employed to search for minimal polynomial
in a straightforward way by simply feeding them the vector
(12) as their input. Let α̃ be an approximate value be-
longing to an unknown algebraic number α, considering the
vector v = (1, α̃, α̃2, · · · , α̃n), how to obtain the exact min-
imal polynomial from its approximate value? We have the
same technique answer to the question from the following
theorem.

Theorem 7. Let α̃ be an approximate value belonging to
an unknown algebraic number α of degree n > 0. If

ε = |α − α̃| < 1/(n2(n + 1)n− 1
2 N2n), (13)

where N is the upper bound on the height of its minimal
polynomial, then G(α) = 0, and the primitive part of G(x)
is its minimal polynomial.

Proof. The proof can be given similarly to that in The-
orem 5.

It is easiest to appreciate the theorem by seeing how it jus-
tifies the following algorithm for obtaining minimal polyno-
mials from its approximation:

Algorithm 3. Reconstructing Minimal Polynomial
Input: a floating number (α̃, n, N) belonging to an unknown
algebraic number α, i.e., satisfying (13).
Output: g(x), the minimal polynomial of α.

Step 1: Construct the vector v;

Step 2: Compute ε satisfying (13);

Step 3: Call algorithm 1 to find an integer relation
w for v;

Step 4: Obtain w(x) the corresponding polyno-
mial;

Step 5: Evaluate the primitive part of w(x) to g(x);

Step 6: return g(x).

Theorem 8. Algorithm 3 works correctly as specified and
uses O(n(logn + logN)) binary bit operations, where n and
N are the degree and height of its minimal polynomial, re-
spectively.

Proof. Correctness follows from Theorem 7. The cost
of the algorithm is O(n(logn+ logN)) binary bit operations
obviously.

The method of obtaining exact minimal polynomial from
an approximate root can be extended to the set of complex
numbers and many applications in computer algebra and
science.

This yields a simple factorization algorithm for multivari-
ate polynomials with rational coefficients: We can reduce a
multivariate polynomial to a bivariate polynomial using the
Hilbert irreducibility theorem, the basic idea was described
in [8], and then convert a bivariate polynomial to a univari-
ate polynomial by substituting a transcendental number in
[21] or an algebraic number of high degree for one variate. It
can find the bivariate polynomial’s factors, from which the
factors of the original multivariate polynomial can be recov-
ered using Hensel lifting. After this substitution we can get
an approximate root of the univariate polynomial and use
our algorithm to find the irreducible polynomial satisfied by
the exact root, which must then be a factor of the given
polynomial. This is repeated until all the factors are found.

The other yields an efficient method of converting the ra-
tional approximation representation to the minimal polyno-
mial representation. The traditional representation of alge-
braic numbers is by their minimal polynomials [1, 2, 11, 17].
We now propose an efficient method to the minimal polyno-
mial representation, which only needs an approximate value,
degree and height of its minimal polynomial, i.e., an ordered
triple < α̃, n, N > instead of an algebraic number α, where
α̃ is its approximate value, and n and N are the degree
and height of its minimal polynomial, respectively, denoted
by < α >=< α̃, n, N >. It is not hard to see that the
computations in the representation can be changed to com-
putations in the other without loss of efficiency, the rational
approximation method is closer to the intuitive notion of
computation.

4. EXPERIMENTAL RESULTS
Our algorithms have been implemented in Maple. The

following examples run in the platform of Maple 12 under
Windows and PIV2.53GB, 512MB of main memory. Table
1 proposes the Digits of approximate values to compare our
method against the LLL-lattice basis reduction algorithm.

Ex. n N DLLL DPSLQ EPSLQ

1 4 13 16 12 8
2 7 17 36 25 11
3 10 15 57 36 16
4 15 19 102 59 25
5 23 9 145 77 29
6 27 19 240 109 55
7 30 15 277 118 57
8 34 11 327 126 67
9 40 15 435 161 82
10 45 17 532 189 110
11 50 13 620 200 123
12 100 13 2033 427 381

Table 1: Comparison between our algorithm and
LLL-lattice basis reduction technique

In Table 1, we present many examples to compare our new
method against the LLL-lattice basis reduction algorithm.
For each example, we construct the irreducible polynomial
with random integral coefficients in the range −20 ≤ c ≤ 20.
Here n and N denote the degree of algebraic number and the
height of its corresponding minimal polynomial respectively;
whereas DLLL and DPSLQ are relative Digits to obtain the
exact minimal polynomial in theory, EPSLQ is in our optimal
experimental results respectively.



From Table 1, we observe that the Digits of our algorithm
is far less than the LLL-lattice basis reduction technique
in theory. However, the Digits of our algorithm is more
than that of the optimal experimental results. So, in the
further work we would like to consider improving the error
controlling.

The following first two examples illuminate how to obtain
an exact quadratic algebraic number and minimal polyno-
mial. Example 3 uses a simple example to test our algorithm
for factoring primitive polynomials with integral coefficients.

Example 1. Let α be an unknown quadratic algebraic num-
ber. We only know an upper bound of height on its mini-
mal polynomial N = 47. According to theorem 5, compute
quadratic algebraic number α as follows: First obtain con-
trol error ε = 1/(12 ∗√3 ∗N4) = 1/(1807729447692∗√3) ≈
1.0 × 10−8. And then assume that we use some numerical
method to get an approximation α̃ = 11.937253933, such
that |α − α̃| < ε. Calling algorithm 2 yields as follows:
Its minimal polynomial is g(x) = x2 − 8 ∗ x − 47. So, we
can obtain the corresponding quadratic algebraic number
α = 4 + 3

√
7.

Remark 3. The function identify in maple 12 needs Dig-
its:=13, whereas our algorithm only needs 9 digits.

Example 2. Let a known floating number α̃ belonging to
some algebraic number α of degree n = 4, where α̃ =
3.14626436994198, we also know an upper bound of height
on its minimal polynomial N = 10. According to theo-

rem 7, we can get the error ε = 1/(n2(n + 1)n− 1
2 N2n) =

1/(42 ∗ 5
7
2 ∗ 108) ≈ 2.2 × 10−12. Calling algorithm 3, if

only the floating number α̃, such that |α − α̃| < ε, then
we can get its minimal polynomial g(x) = x4 − 10 ∗ x2 + 1.
So, the exact algebraic number α is able to be denoted by
< α >=< 3.14626436994198, 4, 10 >, i.e., <

√
2 +

√
3 >=<

3.14626436994198, 4, 10 >.

Remark 4. In the example 2, we only propose a simple
example to represent the exact algebraic number by approx-
imate method. In the further work, we would like to discuss
the efficient arithmetic algorithms for summation, multipli-
cation and inverse of the rational approximation represen-
tation.

Example 3. This example is an application in factoring
primitive polynomials over integral coefficients. For conve-
nience and space-saving purposes, we choose a very simple
polynomial as follows:

p = 3x9 − 9x8 + 3x7 + 6x5 − 27x4 + 21x3 + 30x2 − 21x + 3

We want to factor the polynomial p via reconstruction of
minimal polynomials over the integers. First, we transform
p to a primitive polynomial as follows:

p = x9 − 3x8 + x7 + 2x5 − 9x4 + 7x3 + 10x2 − 7x + 1,

We see the upper bound of coefficients on polynomial p is
10, which has relation with an upper bound of coefficients
of the factors on the primitive polynomial p by Landau-
Mignotte bound [18]. Taking N = 5, n = 2 yields ε =

1/(22 ∗ (2+1)2−
1
2 ∗ 54) = 1/(7500 ∗√3) ≈ 8.0× 10−5 . Then

we compute the approximate root on x. With Maple we get

via [fsolve(p = 0, x)]: S = [2.618033989, 1.250523220,
−.9223475138, .3819660113, .2192284350].

According to theorem 7, let α̃ = 2.618033989 be an ap-
proximate value belonging to some quadratic algebraic num-
ber α, calling algorithm 3 yields as follows:

p1 = x2 − 3 ∗ x + 1.

And then we use the polynomial division to get

p2 = x7 + 2 ∗ x3 − 3 ∗ x2 − 4 ∗ x + 1.

Based on the Eisenstein’s Criterion [16], the p2 is irreducible
in Z[X]. So, the p1 and p2 are the factors of primitive poly-
nomial p.

5. CONCLUSIONS
In this paper, we propose a new method for obtaining ex-

act results by numerical approximate computations. The
key technique of our method is based on an improved pa-
rameterized integer relation construction algorithm, which is
able to find an exact relation by the accuracy control. The
error ε in formula (13) is an exponential function in degree
and height of its minimal polynomial. The result is con-
sistent with the existence of error controlling on obtaining
an exact rational number from its approximation in [23].
Using our algorithm, we have succeed in factoring multi-
variate polynomials with rational coefficients and providing
an efficient method of converting the rational approxima-
tion representation to the minimal polynomial representa-
tion. Our method can be applied in many aspects, such as
proving inequality statements and equality statements, and
computing resultants, etc.. Thus we can take fully advan-
tage of approximate methods to solve larger scale symbolic
computation problems. Furthermore, our basic idea can be
generalized easily to complex algebraic numbers.
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